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Introduction

Vectors

» Any entity involving both magnitude and direction is called a
"vector."
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Introduction

Vectors

» Any entity involving both magnitude and direction is called a
"vector."

» A vector is represented by an arrow whose length denotes the
magnitude of the vector and whose direction represents the
direction of the vector.
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Introduction
Vector Addition

Parallelogram Law for Vector Addition.

The sum of two vectors = and y that act at the same point is the
vector beginning at that is represented by the diagonal of
parallelogram having = and y as adjacent sides.
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Introduction

Scalar Multiplication

Besides the operation of vector addition, there is another natural
operation that can be performed on vectors—the length of a vector
may be magnified or contracted. This operation, called scalar
multiplication, consists of multiplying the vector by a real number.
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Problems

1. Determine whether the vectors emanating from the origin and
terminating at the following pairs of points are parallel.

(@) (3,1,2) and (6,4,2)

(b) (=3,1,7) and (9, -3, —21)

(c) (5,—6,7)and (—5,6,—7)

(d) (2,0,-5) and (5,0, -2)

2. Find the equations of the lines through the following pairs of points
in space.

(@) (3,—2,4)and (—5,7,1)
(b) (2,4,0) and (—3,-6,0)
(c) (3,7,2)and (3,7,-8)

(d) (—2,—1,5) and (3,9,7)
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Definition- Vector space

Definition

A vector space (or linear space) V' over a field F' consists of a set on
which two operations (called addition and scalar multiplication,
respectively) are defined so that for each pair of elements x,y in V'
there is a unique element « + y in V, and for each element a in F' and
each element z in V there is a unique element ax in V, such that the
following conditions hold.

A. Vinoth | Vector Spaces(Unit-I)



Definition-Vector space

Definition
1. Forallz,ye Ve +y=y+=.
2. Forallz,y,ze V., (x+y) +z=az+ (y+ 2).

3. There exist an element in V' denoted by 0 such that z + 0 = « for
eachxz e V.

4. For each element = € V there exists an element y in V' such that
Ty = 0=

5. Foreach elementz € V, 1z = z.

6. For each pair of elements a, b in F' and each element z € V,
(ab)x = a(bx).

7. For each element a € F' and each pair of elements z,y € V,
a(z +y) = az + ay.

8. For each pair of elements a,b € F' and each elements z € V,
(a+b)x = ax + bz.

y
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NOTE:

1. The elements = + y and ax are called the sum of = and y and the
product of a and x, respectively.

2. The elements of the field F' are called scalars and the elements
of the vector space V are called vectors.

3. The word “vector” is now being used to describe any element of
a vector space.
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Examples

1. Let F be afield. The set of all n—tuples
F" ={(a1,az,...,a,)|a; € Fyi=1,2,...,n}is a vector space
over F' with coordinatewise addition and scalar multiplication.
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Examples

1. Let F be afield. The set of all n—tuples
F" ={(a1,az,...,a,)|a; € Fyi=1,2,...,n}is a vector space
over F' with coordinatewise addition and scalar multiplication.
2. Let M,,«»(F') denotes the set of all m x n matrices with entries
from the field F. Then M,,«,(F) is a vector space over F with
matrix addition and scalar multiplication.

A. Vinoth | Vector Spaces(Unit-1)



Examples

1. Let F be afield. The set of all n—tuples
F" ={(a1,az,...,a,)|a; € Fyi=1,2,...,n}is a vector space
over F' with coordinatewise addition and scalar multiplication.

2. Let M,,«»(F') denotes the set of all m x n matrices with entries
from the field F. Then M,,«,(F) is a vector space over F with
matrix addition and scalar multiplication.

3. Let S be any nonempty set and F be any field, and let F(S, F)
denote the set of all functions from S to F' . Two functions f and
gin F(S, F) are called equal if f(s) = g(s) foreach s € S. The
set F'(S, F) is a vector space with the operations of addition and
scalar multiplication defined for f,g € F'(S, F') and ¢ € F by

(f +9)(s) = f(s) + g(s) and (cf)(s) = c[f(s)]
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Examples

4. The set of all polynomials with coefficients from a field I is a
vector space over F' with usual addition and scalar multiplication
of polynomials.
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Examples

4. The set of all polynomials with coefficients from a field F'is a

vector space over F' with usual addition and scalar multiplication
of polynomials.

5. Let V consist of all sequences {a,,} in F' that have only a finite
number of nonzero terms a,,. If {a,,} and {b,,} are in V" and
t € F, define {a,} + {bn} = {an + b, } and t{a, } = {ta,}.
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Cancellation Law for Vector Addition

Theorem (Cancellation Law for Vector Addition)

If x,y and z are vectors in a vector space V such that x + z = y + z,
then z = y.
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Cancellation Law for Vector Addition

As z € V and V is a vector space, there exists a vector v € V' such
that z + v = 0. Hence

w = #40
x+ (z+0)
(z+2)+v
(y+2) +v
= y+(z+v)
y+0

= Y
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Suppose 0,0’ € V such that « + 0 = z and « + 0’ = x. Thus
2+ 0 =2+ 0". Then by cancellation law for vector addition 0 = 0'.
Hence proved. O

Note:
The vector 0 is called the zero vector of V.
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The vector y described in condition (4) of the definition of Vector
space is unique.
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The vector y described in condition (4) of the definition of Vector
space is unique.
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The vector y described in condition (4) of the definition of Vector
space is unique.

Note:
the vector y is called the additive inverse of = and is denoted by —z.
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In any vector space V, the following statements are true:

(@) 0x =0 foreachz € V.
(b) (—a)z = —(az) = a(—=x) foreacha € F andeachz € V.

(c) a0 =0 foreacha € F.
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(a) Let 2 be any vector in V. Then

0Ox+0x = (0+0)x
= 0Oz
= 0x+0
= 040z

By Cancellation Law for Vector Addition, we have 0z = 0.
(b) Since —(ax) is the unique additive inverse of ax,

ax + [—(ax)] = 0.

Now,
ax + (—a)z =[a+ (—a)]lz =0z =0

From equation (1) and (2), we have (—a)x = —(az). In particular,
(=1)z = —z. Now

a(—z) = a[(=1)z] = [a(-1)]z = (-a)z.

The proof of (c) is similar to (a)

(1)

()




Subspaces

Definition
A subset W of a vector space V over a field F is called a subspace of

V if W is a vector space over F' with the operations of addition and
scalar multiplication defined on V.

Note:
In any vector space V, V and {0} are subspaces.
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Theorem

LetV be a vector space and W a subset of V. Then W is a subspace
of V' if and only if the following three conditions hold for the operations
defined in'V'.

1.0e W
2. x+y <€ W wheneverx € W andy € W.
3. cx € W wheneverc e F andx € W.
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Remarks:
The transpose A? of an m x n matrix A4 is the n x m matrix obtained

from A by interchanging the rows with the columns; that is,
(AY);; = Aj;. A symmetric matrix is a matrix A such that A" = A.
1. The set W of all symmetric matrices in M,,«,,(F') is a subspace
of M, xn(F).
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Any intersection of subspaces of a vector space V is a subspace of
V.

Remark:
1. Union of subspaces need not be a subspace

2. Union of two subspaces of a vector space V' is a subspace of V
if and only if one of the subspaces contains other.
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Definition

Let V' be a vector space and S a nonempty subset of V. A vector

v € V is called a linear combination of vectors of S if there exist a
finite number of vectors uy, us, ..., u, in S and scalars a1, as, ..., a,
in £ such that v = ayuy + asus + . .. + a,u, . In this case we also say
that v is a linear combination of uy, us,...,u, and call ay, as, ..., a,
the coefficients of the linear combination. )
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Let V' be a vector space and S a nonempty subset of V. A vector
v € V is called a linear combination of vectors of S if there exist a

finite number of vectors uy, us, ..., u, in S and scalars a1, as, ..., a,
in £ such that v = ayuy + asus + . .. + a,u, . In this case we also say
that v is a linear combination of uy,us, ..., u, and call ay, as, ..., a,

the coefficients of the linear combination.

Problem

Express (2,6,8) as a linear combination of
up = (1,2,1),us = (—2,—4, —-2),u3z = (0,2, 3),
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Problem

Prove that 223 — 222 + 122 — 6 is a linear combination of

23 — 222 — 52 — 3 and 3z® — 522 — 42 — 9. Also show that

3x% — 222 + Tz + 8 is not a linear combination of z® — 222 — 5z — 3
and 3z3 — 522 — 4z — 9.
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Problem

Prove that 22 — 222 + 12z — 6 is a linear combination of

23 — 222 — bz — 3 and 3z® — 522 — 4z — 9. Also show that

3x3 — 222 + Tx + 8 is not a linear combination of 23 — 222 — 5x — 3
and 3z3 — 522 — 4z — 9.

Definition

Let S be a nonempty subset of a vector space V. The span of S,
denoted span(S), is the set consisting of all linear combinations of the
vectors in S. For convenience, we define span()) = {0}.

| A

4
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Example

In R3, the span of the set {(1,0,0), (0,1,0)} consists of all vectors in
RR3 that have the form a(1,0,0) + 5(0,1,0) = (a, b,0) for some scalars
a and b. Thus the span of {(1,0,0), (0, 1,0)} contains all the points in
the xy-plane.
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Example

In R3, the span of the set {(1,0,0), (0,1,0)} consists of all vectors in
RR3 that have the form a(1,0,0) + 5(0,1,0) = (a, b,0) for some scalars
a and b. Thus the span of {(1,0,0), (0, 1,0)} contains all the points in
the xy-plane.

Theorem

The span of any subset S of a vector space V' is a subspace of V.
Moreover, any subspace of V' that contains S must also contain the
span of S.

| \
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Definition

A subset S of a vector space V' generates (or spans) V if span(S) =
V. In this case, we also say that the vectors of S generate (or span)

V.
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Definition
A subset S of a vector space V' generates (or spans) V if span(S) =

V. In this case, we also say that the vectors of S generate (or span)
V.

Problem

Show that the vectors (1,1,0), (1,0, 1), and (0,1, 1) generate R3

Problem

Show that the polynomials z* + 3z — 2,222 + 5z — 3, and
—2% — 4z + 4 generate Py(R)
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Problem

Show that the matrices 1

generate Ms, 5 (R).
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Linear Dependence and Linear Independenc

Definition

A subset S of a vector space V is called linearly dependent if there
exist a finite number of distinct vectors uq, us, ..., u, in S and scalars
ai,as, ..., a,, not all zero, such that a;u; + asus + ... + a,u, = 0.
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Linear Dependence and Linear Independenc

Definition
A subset S of a vector space V is called linearly dependent if there

exist a finite number of distinct vectors uq, us, ..., u, in S and scalars
ai,as, ..., a,, not all zero, such that a;u; + asus + ... + a,u, = 0.

Problem

LetS = {(1,3,-4,2),(2,2,—4,0), (1, —3,2, —4), (~1,0,1,0)} be a set
in R*. Show that S is linearly dependent in R*
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Linear Dependence and Linear Independenc

Definition
A subset S of a vector space V is called linearly dependent if there

exist a finite number of distinct vectors uq, us, ..., u, in S and scalars
ai,as, ..., a,, not all zero, such that a;u; + asus + ... + a,u, = 0.

Problem

LetS = {(1,3,-4,2),(2,2,—4,0), (1, —3,2, —4), (~1,0,1,0)} be a set
in R*. Show that S is linearly dependent in R*

| A\

Problem
Show that the set

{{—14 _03 ?}{_63 _72 _47}{:§ _33 121”"”]”2%(1@)

is linearly dependent.
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Definition

A subset S of a vector space that is not linearly dependent is called
linearly independent.
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Definition
A subset S of a vector space that is not linearly dependent is called
linearly independent.

Problem

Show that the set

S ={(1,0,0,-1),(0,1,0,-1),(0,0,1,—1),(0,0,0,1)} is linearly
independent

| A
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Definition
A subset S of a vector space that is not linearly dependent is called
linearly independent.

Problem

Show that the set

S ={(1,0,0,-1),(0,1,0,-1),(0,0,1,—1),(0,0,0,1)} is linearly
independent

| A

Problem

Letpy(z) = 2% + 2F 1 + ... + 2" k=0,1,...,n. Show that the set
{po(z),p1(x),...,pn(x)} is linearly independent in P,,(F)

| A\
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LetV be a vector space, and let Sy C Sy C V. If Sy is linearly
dependent, then S, is linearly dependent.
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Theorem

LetV be a vector space, and let S; C Sy C V. If S, is linearly
dependent, then S, is linearly dependent.

| A\

Theorem

Let V' be a vector space, and let S; C Sy C V. If Sy is linearly
independent, then S, is linearly independent.
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Theorem

LetV be a vector space, and let S, C So C V. If Sy is linearly
dependent, then S, is linearly dependent.

| A\

Theorem

Let V' be a vector space, and let S; C Sy C V. If Sy is linearly
independent, then S, is linearly independent.

Let S be a linearly independent subset of a vector space V', and let v
be a vector inV that is notin S. Then S U {v} is linearly dependent if
and only ifv € span(S).
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Note:
The empty set is linearly independent, for linearly dependent sets
must be nonempty.
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Bases and Dimension

Definition
A basis f for a vector space V is a linearly independent subset of V'
that generates V.

Example

We know that span(¢) = {0} and ¢ is linearly independent, hence ¢ is
a basis for the zero vector space.

4
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Bases and Dimension

Definition
A basis f for a vector space V is a linearly independent subset of V'
that generates V.

Example

We know that span(¢) = {0} and ¢ is linearly independent, hence ¢ is
a basis for the zero vector space.

4

Example

In F | lete; = (1,0,0,...,0),e2 = (0,1,0,...,0), ..., e, = (0,0, ...,0,1);
It is easy to see that {ey, es, ..., e,, } is @ basis for F™ and is called the
standard basis for F'" .
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Bases and Dimension

Example

In M., (F), let E;; denote the matrix whose only nonzero entry is a
1in the ¢th row and jth column. Then {E;; : 1 <i<m,1 <j <n}is
a basis for M, x.(F).
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Bases and Dimension

Example

In M., (F), let E;; denote the matrix whose only nonzero entry is a
1in the ¢th row and jth column. Then {E;; : 1 <i<m,1 <j <n}is
a basis for M, x.(F).

Example

In P, (F) the set {1,z,22,...,2"} is a basis. This basis is called the
standard basis for P, (F’)
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Bases and Dimension

Example

In M., (F), let E;; denote the matrix whose only nonzero entry is a
1in the ¢th row and jth column. Then {E;; : 1 <i<m,1 <j <n}is
a basis for M, x.(F).

Example

In P, (F) the set {1,z,22,...,2"} is a basis. This basis is called the
standard basis for P, (F’)

Example
The set {1,z,22,...} is a basis for P(F).
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Bases and Dimension

Theorem

LetV be a vector space and = {uy,us,...,u,} be a subset of V.
Then j3 is a basis for V if and only if each v € V' can be uniquely
expressed as a linear combination of vectors of 3, that is, can be
expressed in the form

V= a1uy + agus + - - - + anuy,

for unique scalars a, as, . . ., a,.
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Bases and Dimension

Theorem

LetV be a vector space and = {uy,us,...,u,} be a subset of V.
Then j3 is a basis for V if and only if each v € V' can be uniquely
expressed as a linear combination of vectors of 3, that is, can be
expressed in the form

V= a1uy + agus + - - - + anuy,

for unique scalars a, as, . . ., a,.

| A\

Theorem

If a vector space V is generated by a finite set S, then some subset of
S is a basis for V.. Hence V' has a finite basis.

v
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Bases and Dimension

Problem

Let S - {(2 _37 5)3 (8 —127 20)a (1/ 07 _2)3 (07 27 —1); (77 27 0)} be
subset of R3. Extract a basis for R® which is a subset of S.
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Bases and Dimension

Problem

Let S - {(2 737 5)3 (8 7127 20)a (1/ 07 72)3 (07 27 71); (77 27 0)} be
subset of R3. Extract a basis for R? which is a subset of S.

Theorem (Replacement Theorem)

Let V' be a vector space that is generated by a set G containing
exactly n vectors, and let L be a linearly independent subset of V
containing exactly m vectors. Then m < n and there exists a subset
H of G containing exactly n — m vectors such that L U H generates 'V . )
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Bases and Dimension

Problem

Let S - {(2 737 5)/ (8 7127 20)a (1/ 07 72)3 (07 27 71) (77 27 O)} be
subset of R3. Extract a basis for R? which is a subset of S.

A

Theorem (Replacement Theorem)

Let V' be a vector space that is generated by a set G containing
exactly n vectors, and let L be a linearly independent subset of V
containing exactly m vectors. Then m < n and there exists a subset
H of G containing exactly n — m vectors such that L U H generates 'V . )

LetV be a vector space having a finite basis. Then every basis for V
contains the same number of vectors.
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Bases and Dimension

Definition

A vector space is called finite-dimensional if it has a basis consisting
of a finite number of vectors. The unique number of vectors in each
basis for V' is called the dimension of V' and is denoted by dim/(V). A
vector space that is not finite-dimensional is called
infinite-dimensional.
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Bases and Dimension

Definition

A vector space is called finite-dimensional if it has a basis consisting
of a finite number of vectors. The unique number of vectors in each
basis for V' is called the dimension of V' and is denoted by dim/(V). A
vector space that is not finite-dimensional is called
infinite-dimensional.

Examples
1. dim({0}) =0
(C) =1 over the field C
dim(C) = 2 over the field R
dim(F™) =n
(
(

dim

dim(M,,,xrn) = mn
dim (P, (F)) =n(77777)

SIORE NS

v
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Bases and Dimension

Definition

A vector space is called finite-dimensional if it has a basis consisting
of a finite number of vectors. The unique number of vectors in each
basis for V' is called the dimension of V' and is denoted by dim/(V). A
vector space that is not finite-dimensional is called
infinite-dimensional.

Examples
1. dim({0}) =0
dim(C) = 1 over the field C
dim(C) = 2 over the field R
dim(F™) =n
dim(M,,,xrn) = mn
(

dim(P,(F)) =a(77777) =n+ 1

SIORE NS

v
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Bases and Dimension

Theorem

LetV be a vector space with dimension n.

(a) Any finite generating set for V' contains at least n vectors, and a
generating set for V' that contains exactly n vectors is a basis for V.
(b) Any linearly independent subset of V' that contains exactly n
vectors is a basis for V.

(¢) Every linearly independent subset of V' can be extended to a
basis for V.
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1. Show that {22 + 3z — 2,222 + 5z — 3, —2? — 42 + 4} is a basis for
Py(R.

1 1 1 1 1 0 0 1 . .
2.Showtha’[{{1 0]'{0 1},{1 1}{1 1Hlsaba&s

for AJQXQ(R)

3. Show that the set
S ={(1,0,0,-1),(0,1,0,-1),(0,0,1, 1), (0,0,0,1)} is a basis
for R*

4. Letpp(z) = 2F + 2" + ... 42" k=0,1,...,n. Show that the
set {po(x),p1(z),...,pn(x)} is a basis for P, (F)

A. Vinoth | Vector Spaces(Unit-1)



Let W be a subspace of a finite-dimensional vector space V. Then W
is finite-dimensional and dim(W') < dim(V"). Moreover, if
dim(W) = dim(V), thenV = W.

1. Let W = {(ay, as,a3,a4,a5) € F® :a; +az +as = 0,a3 = a4 }. Is
W a subspace of F57? If so, find its basis and dimension.

2. Is the set of all n x n diagonal matrices a subspace of M, ,,. If
so, find its basis and dimension.

3. Is the set of all n x n symmetric matrices a subspace of M,,x,,. If
so, find its basis and dimension.
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Corollary

If W is a subspace of a finite-dimensional vector space V, then any
basis for W can be extended to a basis for V.

Lagrange polynomials

Let cg, c1, ..., ¢, be distinct scalars in an infinite field 7' . The
polynomials fo(z), fi(z), ..., fn(z) defined by

(x—c1))(x—c2) - (x—ci1)(@—ciy1) ... (x —cp)

i\L =
f ( ) (Fz - 01)(01, - C2) ce (F, - Cw’,—l)(ci, - Ci+1) cee (Fz - Cn)
n T — Ck
= Hk:o,k#m

are called the Lagrange polynomials (associated with cg, ¢y, ..., ¢,).-
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Linear Transformations

Definition
Let V and W be vector spaces (over F' ). We call a function
T :V — W alinear transformation from V' to W if, for all z,y € V and
c € F ,we have
1. T(z +y) =T(z) + T(y)
2. T(cx) = cT'(z)
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Linear Transformations

Definition

Let V and W be vector spaces (over F' ). We call a function

T :V — W alinear transformation from V' to W if, for all z,y € V and
c € F ,we have

1. T(z +y) =T(z) + T(y)
2. T(cx) = cT'(z)

Example

Define T : R? — R? by T'(ay, as) = (2a; + as,ay). Then T is a linear
Transformation.
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Linear Transformations

Problem

Prove that every linear transformation T from R to R is of the form
T(xz) = cx for some fixed c € R
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Linear Transformations

Problem

Prove that every linear transformation T from R to R is of the form
T(xz) = cx for some fixed c € R

Problem

Prove that every linear transformation T from R? to R? is of the form
T(z,y) = (axz + by, cx + dy) for some fixed a,b,c,d € R
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